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‘ The General Two-Higgs-Doublet Model I

Consider the 2HDM potential in a generic basis:
V=m} & & 4+ mL®®, — [m},®]®y 4+ hoc] + Ia (2]®))?
+EX(BI@2)7 + As(D] 1) (RLD2) + Aa(D] ) (DD1)

+ LA (@]2) + [Ao(®[®1) + Ae(@182)] @] ®s + hc.}

A basis change consists of a U(2) transformation ®, — U, ;®, (and ®! = QDgUJ&).

Rewrite V in a U(2)-covariant notation:

V = Y@l @y + $7,5,4(21 @) (@1 D)

where Z ;.7 = Z_.g,; and hermiticity implies Y, ; = (Y33)" and Z_ ;.5 = (Zpaaz)”- The
barred indices help keep track of which indices transform with U and which transform

with U, For example, Yy, — UscYqUly and Zypeq — UacUUeqUS 22, 105



The most general U(1)gnm-conserving vacuum expectation value (vev) is:

v 0 ; Cﬁ
db,) = — : with U, = e . :
(%a) \/§< Vg ) ( Sg et >

where v = 2myy /g = 246 GeV. The overall phase 7 is arbitrary (and can be removed
with a U(1)y hypercharge transformation). If we define the hermitian matrix V,; = 0,9;,

then the scalar potential minimum condition is given by the invariant condition:

Tr (VY) + 20’ Z5.0ViaViae = 0.

CLEC
The orthonormal eigenvectors of V_ ; are ¥, and W, = V. € (with €12 = —ea1 = 1,
€11 = €22 = 0). Note that 9;w;, = 0. Under a U(2) transformation, 9, — U0, but:

W — (det U) ' U@y,

where det U = e'X is a pure phase. That is, @, is a pseudo-vector with respect to U(2).

AN . L — A I _ _
One can use w, to construct a proper second-rank tensor: W ; = W, wW; = 0,5 — Vi

Remark: U(2) = SU(2)xU(1)y/Zz. The parameters m?,, m3,, m>,, and Ay, ..., A7 are
invariant under U(1)y transformations, but change under a “flavor’-SU(2) transformation;

whereas © transforms under the full U(2) group.



A list of invariant and pseudo-invariant quantities

Yi=Tr (YV), Yo=Tr (YW),
Z]_ = Za,EcJ ‘/ba,vd(_37 ZQ = Za,EcJ WbC_LWd(_Z7
23 = Zgped VeaWae 24 = Zypea VoeWaa

are invariants, whereas the following (potentially complex) pseudo-invariants

YgEYB@\;@b, Z5EZ

a aEcJ Ua, Wy Ué Wq ’

Ze = Zypeq Vs Up Vs Wy Lr = Zpeqg Vs Wp W Wy .

transform as

Y3, Zg, Z7] — (det U) " '[Y3, Zg, Z7] and Z5 — (det U) *Zs.

Physical quantities must be invariants. For example, the charged Higgs
boson mass is m?,. = Ys+2Z3v?. Pseudo-invariants are useful because one

can always combine two such quantities to create an invariant.



The significance of the Higgs basis

Define new Higgs-doublet fields: H; = 0;®, and Hy = w;P,. Then, the Higgs basis is
defined such that

(H)) =v/V2, (Hy) =0,
where v = 246 GeV. Note that Hf is an invariant field, where Hg Is pseudo-invariant

(corresponding to a possible rephasing of Hs). The Higgs potential in this basis is:

V =Y H H, + Yo HIHy + [YsH!Hs + h.c.]
+3Z1(H{H)" + 3 Z5(H} Hy)* + Zs(H{ Hy)(H Ha) + Za(H| Ho) (H} Hy)
4 {%%(HIHQ)? + [Zg(HIHy) + Z7(H} Hy) H H, + h.c.} ,

where the coefficients of V' correspond to the (pseudo-)invariants introduced previously.
The potential minimum conditions are: Y7 = —%ZWQ and Y3 = —%Z6v2.

Example: for the MSSM Higgs sector,

Zy=Zs=4(g"+ 9% cos’28,  Zy=Zs+3(g"—9d7),  Zi=Z5 -39,

Zs =1(g" + g'*)sin” 28, Zr = —Zs=1(g* + ¢'*)sin2B cos 28 .



‘ The Higgs mass-eigenstate basis I

The three physical neutral Higgs boson mass-eigenstates are determined by
diagonalizing a 3 x 3 real symmetric squared-mass matrix that is defined
in a basis in which only one of the neutral Higgs bosons has a vacuum
expectation value (the so-called “Higgs basis”). The diagonalizing matrix
is a 3 X 3 real orthogonal matrix that depends on three angles: 615, i3

and 623. Under a U(2) transformation,

015, 015 are invariant, and €72 — (det U)_lew%.

One can express the mass eigenstate neutral Higgs directly in terms of the
original shifted neutral fields, 52 = oY — 7, /V2:
1 07 -~ ~ —10o3 ok % ~% _i023\ @RV
hi = —= | P45 (qk1Va + qraWae ) + (qr1V7 + Qroze’”>) P, |

V2

fork=1,....4, where hy = G.



The tnvariant quantities qiy are given by:

k dk1 qK2

1 C12C13 —812 — 1€12513
2 $12€13 C12 — 1512513
3 S13 ’I:Clg

4 1 0

The gy are functions of the angles 612 and 013, where ¢;; = cos 0, and s;; = sin 0;;.

Since wW,e~ %23 is a proper U(2)-vector, we see that the mass-eigenstate

fields are indeed U(2)-invariant fields. Inverting the previous result yields:

GTv, + H W,

(I)a — - 1 ! Y Do ~
Vg + —2 Z (le'Ua + qroe”’ 23wa) hy,

V2t Ve



The gauge boson—Higgs boson interactions

g
2CW

BV = <gmwij“ T4 mZZMZ'“> Re(qj)hy, + emyy AF(W,F G~ +w, G™)

2 _ _
—ngsWZ'UJ(W[L'_G + Wy, G+),
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Re(q;1a51 + 4;24%2) hjby

2
1 20 +vb— o 24 a9 (1 2N\2, pu 29¢ /1 2 7 [P
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* * < 1 cx —2 —10 —<2 U
LvHHE = . m(g1951 + qj2432) 2" hj By by, — jg{zW’u [qle 0" hy +qgge 23H 9 hk] + h.c.}
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The cubic and quartic Higgs couplings

—2i6
3}, = —gv hjhyhy {%1(17513@(%1)21 + aj2apo Re(ag1)(Z3 + Z4) + Re(qj1a2002Z5 ¢~ =" 23)
+Re([2 4 at a0 Za e 1923) 4 Re(q Z- ¢ 1023)
451 T 9511919246 € e\q529K29¢247 €
+ ~— —i693 + —i693
—vhpG"G |Re(qp1)Z1 + Re(qpae Zg)| +vhpH"H |Re(q1)Z3 + Re(qpoe Z7)

—%’U hk{G_H—i_ 1023 [qZQZ4 + qio e_2i923Z5 + 2Re(q1.1)Z¢ e_i923] + h.c.} ,

1 * % * * *
Zap = —ghjhrhihm [qjlqquﬂlqmlzl + 4j20K29029m2%2 + 24519k19%29m2(23 + Z4)
—2i0 —if —if
+2Re(q;1951902am225 ¢ " 23) + 4Re(qj19519p19m2%6 ¢ 23) + 4Re(q)19k2d02am227 ¢ " 23)
1 +a— * * —ib
—5hjh,GTG |:Qj1Q]€1Z1 + 45241943 + 2Re(qj1912%6 € 23)]
1 + - * * —10
—ghjhH"H [%‘2%222 +¢j19123 + 2Re(qj1952%7 € 23)]
Ly L™ BT 0923 [0 a0 20 4 0 aroZe e 20023 & g 0¥ 701023 oo 7o —1023] 4y
o e 9j19K244 T 4519245 € + 9519146 € +aj2qp247 € + h.c.
—izeteeteT ~izyH " H HTHT —(Zz3+ 26T G HYH™

—S(ZsHTHTGT G +ZEH H GTGN) -Gt G T (ZgHTGT + z{H GT) ~HTH (Z;HTG™ +ziH GT).



‘ The Higgs-fermion Yukawa couplings |

The Yukawa Lagrangian, in terms of the quark mass-eigenstate fields, is:
— Ly = UV Ur+D K -V Ur+U K& 2 TDr+D 8% "Dr+h.c.

where &, = (&DO, CTD_) = 102®> and K is the CKM mixing matrix. The
U,D

n are 3 X 3 Yukawa coupling matrices. It is convenient to write:
N = k9, +p%0, = kY=0Y¢ and p% =win?, (Q=U or D).

Under a U(2) transformation, k@ is invariant, whereas p% — (det U)p¥.

U

By construction, Y and x” are proportional to the (real non-negative)

diagonal quark mass matrices My and Mp, respectively, whereas the

matrices pV and p” are independent complex 3 x 3 matrices. In particular,

v
MU:—K’U:diag(mua m07mt)7 MD:—K)DT:

V2 V2

diag(mg, ms, mp) .



The fermion—Higgs boson interactions

The final form for the Yukawa couplings of the mass-eigenstate Higgs bosons

and the Goldstone bosons to the quarks is [with Pp p = 2(1 F75)]:

1= * v 7 * 1
— Ly = ;D{MD(%PR + g1 Pr) + NG iz e “25pPTPr + qfq e 923PDPL] }thz

TT * v * 7 )
U{MU(qMPL + g3 Pr) + 7 (G0 €72 p" PR + quz [ 97 ] T PL ] }Uhk

_ 2 __
+{U K[p"|"Pr— [p"I'"KPL] DHT + % U[KMpPr — MyKPr) DG' + h.c.}

_|_

S| =

By writing [p@]THT = [p@ei¥23]T[e23 HF], we see that the Higgs-fermion
Yukawa couplings depend only on invariant quantities: the diagonal quark

mass matrices, p@e®?23, and the invariant angles 615 and 6.

The couplings of the neutral Higgs bosons to quark pairs are generically
CP-violating as a result of the complexity of the gi> and the fact that the

matrices e!Y23p% are not generally either pure real or pure imaginary.



‘ Conditions for neutral Higgs CP-conservation I

o Im (Z:7%) =1Im (Z:Z2) = Im (Z;Z;) = 0 [equivalent to conditions first
obtained by Lavoura and Silva and by Botella and Silva].

In this case a real basis exists in which all potentially complex coefficients
of the scalar potential in the Higgs basis are real (as the scalar potential

minimum condition fixes Y3 = —%Z(;’UQ).
o Z5(p@)?, Zgp@ and Z;p@ are real matrices (Q = U, D and E).

This guarantees that the couplings of the neutral Higgs boson to fermion

pairs are CP-invariant.

If the two conditions above are satisfied, then the neutral Higgs bosons are
eigenstates of CP, and the only source of CP-violation is the unremovable

phase in the CKM matrix that enters via the charged current interactions
mediated by either W*, H* or G* exchange.



‘ Identifying the CP-odd scalar I

There are three neutral Higgs mass-eigenstates: hi, ho and hsz. In the CP-
conserving limit, two are CP-even and one is CP-odd. (The fourth scalar,

the Goldstone boson GV is always CP-odd.) A Higgs scalar is CP-even if
Re(gk1) # 0.

Suppose that Zg % 0. Then, there are three cases:

1: 513 = Im(Zse 2923) = Im(Zse "923) = Im(Zre "%23) = Im(e"23p%) = 0.

k qk1 qk2 CP
1 C12 —S12 +1
2 S12 C12 +1
3 0 ) —1
4 ) 0 —1




2 8§19 = Im(Z5e_2i923) = Re(ZGG_iQQ?’) = Re(Z7e_i923) = Re(ei923pQ) = 0.

k qk1 qk2 CP
1 C13 —1813 +1
2 0 1 —1
3 $13 1C13 +1
4 ) 0 —1

3: ci0 = Im(Z5e_2i923) = Re(ZGG_iQQ?’) = Re(Z7e_i923) = Re(ei923pQ) = 0.

k qk1 qk2 CP
1 0 1 —1
2 —C13 1813 +1
3 813 1C13 +1
4 ) 0 —1

Note that GTG~ and H™H ™~ can only couple to the CP-even neutral Higgs boson:

Ling D Uhk{G+G_ [Re(le)Zl + Re(QkQG_w%ZG)]

+HYH™ [Re(qkl)Zg + Re(que_wQ?’Zﬂ} } :



We see that Higgs sector CP-conservation implies that Im(Zse=21923) = 0.
Assuming Z5 # 0, one can eliminate 653 by defining the basis-invariant

quantity,
Re(Z; Z¢)
€56 = 5
|Z5 Ze
since Im(Z2Z%) = 0. Then,

RG(Z5€_2i023) = :|:€56|Z5| ,

where the plus [minus] sign above is taken when Im(Zge=%%23) = 0

[Re(Zge™%923) = 0], corresponding to case 1 [cases 2, 3].

Similarly, we can define 57 by replacing Zz with Z; in the above formulae.

The same argument as above implies that €54 = £57.

We then can write for the CP-odd mass:

mi = Y2 + %(Zg + Z4 — 656‘25‘)?)2 .



Suppose that Z5 # 0 and Zg = 0. For simplicity, assume that the three

Higgs masses are non-degenerate. Then each possible case has two subcases:
(a) Im(Z7e~%923) = Im(e?23pQ) = 0
(b) Re(Z7e~123) = Re(e923p%) = 0

1l: s13 = c19 = Im(Z5e_2i923) =0

k k1 k2 CP, | CPy
1 0 +1 —1
2 —1 0 +1 +1
3 0 1 —1 +1
4 1 0 —1 —1




2: S13 — S12 — Im(Z5e_2i923) =0

k k1 qi2 CP, | CPy
1 1 0 +1 +1
2 0 +1 —1
3 0 1 —1 | +1
4 1 0 —1 —1
3: ¢13 = Im(Zse21023) = ()
k qr1 qr2 CP, | CPy
1 0 1 —1 | +1
2 0 1 +1 —1
3 —1 0 +1 | +1
4 1 0 —1 —1

In this last case, we have defined 033 = 0o3 — 015 and Gpo = qroe™ 912,
Likewise, the CP, and CP;, conditions are defined as above but with 053

replaced by 0s5.



In all three cases where Zg = 0,

e The scalar h that is CP-even with respect to both CP, and CP; has

m; = Z1v* and couplings to itself, gauge bosons, and fermions that are
equivalent to those of the SM Higgs boson.

o If Z7 # 0, then the squared-mass of the CP-odd scalar A is given by
mi — Y2 -+ %(Zg + Z4 — 857‘25‘)?)2 y
and the squared-mass of the second CP-even scalar H is given by

myy = Yo + 3(Zs + Zu + e57| Zs| )0

o If Z; =0 but p@ # 0, then one can define an analogous esg that plays
the same role as e57.



A singular point in the parameter space of CP-conserving 2HDMs:

Yo =g =Z-=0.

One neutral Higgs boson is CP-even, with couplings identical to those of
the SM Higgs boson. The other two neutral Higgs bosons have opposite CP
quantum numbers, but the Higgs self-interactions and Higgs boson-vector
boson interactions do not determine which of these two neutral Higgs bosons
is the CP-odd state.

To identify the CP-odd state, examine the Higgs-fermion Yukawa couplings.”
If 292399 is a real matrix (CP,), then hy, is CP-odd if Im(qyz) # 0.
If €923 @ is a pure imaginary matrix (CP}), then hy, is CP-odd if Re(qxz2) # 0.

If p)% =0, then CP, and CP;, are two equally valid choices for the definition

of CP, and one cannot determine which of the two possible neutral Higgs
bosons is CP-odd.

*In the final case 3, replace 0a3 with 93 and gio with qro-




‘ Custodial symmetry in the 2HDM I

In the Standard model, the scalar sector exhibits a global SU(2),xSU(2)r
symmetry that is violated only by hypercharge gauge interactions and the
Higgs-fermion Yukawa couplings. This global symmetry would be exact in
the limit of ¢ = 0 and h; = hy. In the custodial symmetric limit the

electroweak p-parameter,

2
m
W _
1,

m?, cos Oy

p=

to all orders in perturbation theory. In models with only Higgs doublets,
with ¢’ # 0 and h; # hy, radiative corrections generate corrections to the

tree-level relation, p = 1.

Pomarol and Vega studied the implications of custodial symmetry for the
2HDM in 1994. They identified two separate realizations, but failed to
realize that their two cases were actually related by a change of Higgs basis!

Clearly, basis-independent methods can be valuable here!



Define the 2 X 2 matrices Ml; and My, with columns made up of Higgs-basis fields,
Ml = |:iO-2HI<, Hl] , M2 = |:’I:O'2(€iXH2)*, eiXHQ] ,

where x reflects the phase freedom in defining the Higgs basis. Under a global
SU(2)1, xSU(2) transformation, M; — LM;R' (i = 1,2), where L, R € SU(2). The
vacuum preserves the diagonal SU(2) custodial symmetry (corresponding to L = R), since
(M) = (v/+/2)1 and (My) = 0. The SU(2)r xSU(2)g-invariant scalar potential in the
Higgs basis has the form:

V = LY Te [MIM,] + 3YaTr [MIM,) + Yae ™ Tr [MIMy] + 12, (Tr [M{b])
+%Z2 (Tr [M;Mﬂ)Q + %ZgTr [I\\/JIIMl]Tr [M;Mﬂ + %)‘ (Tr [MIMﬂ)Q
—|—% (Z6€_ix Tr [MIMl] + Z7€_ix Tr [MgMﬂ) Ir [MIMﬂ .
For example, Tr [MIMQ] = eiXHIHz + h.c., etc. Since V is hermitian, it follows that:

A= Z,=Zse X,  Im(Yse ) = Im(Zge X) = Im(Zre X)) =0.

Because Z, is real, it follows that Im(Z} YY) = Im(Z; Z;) = Im(Z}Z7) = 0. That is,

custodial symmetry implies that the Higgs scalar potential is CP-conserving.



Thus, custodial symmetry requires that:
A= Zy= Zse X, Im(Yie ™) =Im(Zge ¥) = Im(Zre ) =0.

Consider a real Higgs basis in which all Higgs basis parameters are simultaneously real.
If either Zg or Z7 is non-zero, then sinxy = 0 and it follows that Z, = Z5. If
Ys = Zg = Z7 = 0, then sin 2y = 0 and it follows that Z4, = £ Z5. The corresponding

basis-independent conditions for custodial symmetry are:

( * r72
Re(Z: Z;)
== 656|Z5 3 lf Z6 #0,
| Z6|? |
* r7z2
Z, = { Re(Z;Z7) .
= €57|Z5] , if Z7 #0,
| Z7|?
| +12s], fYs=Zs= 2. =0.

In a real Higgs basis where Zg or Z7 is non-zero, €56 = €57 = sgn Zs, in which case
custodial symmetry implies that Z4, = Z5.T In contrast, if Y3 = Zg = Z7 = 0O, then one
can transform Hy — 1 H5 and change the sign of Z5 while maintaining a real Higgs basis.

Thus in this latter case, custodial symmetry requires Z, = +|Z5|.

"The sign of Z5 is invariant under an O(2) transformation between any two real bases.



The charged Higgs boson mass is given by
My = Yo+ 375,
If A” is the CP-odd Higgs boson, we previously noted that:

Yo + 35(Zs + Zs — 56| Z5|), if Zg # 0,
Yo + 5(Zs + Zs — e57|Zs5|), it Z7 # 0.

P
m, =

Hence custodial symmetry implies that

Mg+ = ™Ma, 1fZ6#OOI‘Z7#O

If Y35 = Zg = Z7 = 0, then there are two scalars, h, and h; with opposite-sign CP and

squared masses

my, = Yo+ 30 (Zs + Za F | Zs])

in which case custodial symmetry implies that H* is mass-degenerate with either h, or hy.
However, if pQ — 0 as well, then the absolute CP quantum numbers of h, and h; are

indeterminate.



Of course, in general p® = 0. For example, in a Type-1l 2HDM,

|PD| _ \/§Mptan5 |pU| _ \/§MUcotB
’U ) )

v

where tan 8 = wy /vy in the basis in which the "wrong-Higgs couplings” vanish.

Thus, we examine the consequences of imposing the custodial symmetry on the

Higgs-fermion Lagrangian. The end result is:

which does not impose CP-conservation on the neutral Higgs-fermion interactions (since

the latter requires that ei923pU, ei923pD are both either real or pure imaginary matrices).
CP violation =— h, and h; do not possess definite CP quantum numbers.

CP conservation = either h, or h; can be CP-even, depending on whether 23 p% is

real or pure imaginary.

Thus, for the case of Y3 = Zg = Z; = 0, imposing the custodial symmetry can vyield
mzi = m%, where H is a CP-even Higgs boson! This is the twisted scenario of Gerard

and Herquet.



Basis-independent computation of S, 7' and U
in the 2HDM

If the custodial symmetry is violated, then one-loop radiative corrections can
shift the tree-level result of p = 1. Denoting al' = 6p = p — 1, we find that
the contribution of a general (possibly CP-violating) Higgs sector to the T
parameter is given by the basis independent result:

2

3

g . .

ol = 2, 2 Z [qra| " F (my, mip+) — qilF(m?7m§) +0(g'?), i#j#k,
64w myi;, —

where my, = my,, and

F(z,y) E%(x—i—y)—mw_yyln(x/y), F(zx,z)=0.

This result is consistent with a recent computation of Grimus, Lavoura,
Ogreid and Osland.



In the custodial symmetric limit (with ¢’ = 0), the Higgs contribution to T

must vanish:

3
2 2 2 2 2 .2
Z |qr2|"F (mi, mig+) — qkle(mi?mj) = 0.
k=1
One can check that in all of the CP-conserving cases introduced earlier, the
above relation is automatically satisfied when myg+ = mgy. If Zg =27 =10

then my+ = my is also an allowed solution. As an example, for the case of:

k qr1 k2 CP, | CPy
1 0 1 +1 —1
2 —1 0 +1 +1
3 0 1 —1 +1

T is proportional to:
F(m{,m}+) + F(m3,mye) — F(mi,m3) =0,

if H* is degenerate either with h; or hs.



Basis-independent formulae for S and U have also been obtained.

3
1
2 2 2 2 2 9 2 2 2
S = 5 E Q1 B22(my; my, my) — myqp Bo(my; my, my)
™m
Z Lk=1
2 2 2 2 2 2 2 2 2 2 2 2
+m,Bo(my;my, m¢) + g1 Ba2(my;msy, m3) + g5 Baa(my; mi, ms
2 2 2 2 2 2 2 2 2 2
-|—Q31522(mz; mq, my) — 522(mz; m,, m¢) - Bzz(mz; ™+, mHi)]

Here my us a “reference” Higgs mass (often one chooses this mass to be mz or the mass

of the lightest neutral Higgs boson). Above, we have defined:

Boo(q’; mi, my) = Bao(q’;mi, m3) — Baa(0;mi, m5)

2 2 o2y _ 29 2 2 2 2
Bo(q”; m{, m5) = Bo(q”; mi, m3) — Bo(0; m7, m3) .

where Bso and By are the usual Passarino-Veltman one-loop functions. Similarly,

2 2

S+U= [m%VBo(miv; myy, mz) — ng(m‘%v; My, mfb) — 2822(771%‘/; m?{i, mzi)

2
7TmW

3

2 2 2 2 2 2 2 2 2 2 2 2 2
+ Z Qg1 Bz (myys myy, my) + [qra|™Baz(miyy; migs, mi) — qymyy Bo(myy s my,, my) | -
k=1



The general 2HDM parameters are constrained mainly by 7'

In the decoupling limit, the lightest Higgs mass is constrained in the same manner as in
the SM.

Away from the decoupling limit, regions exist in which the lightest Higgs boson can be
significantly heavier than the SM Higgs boson.

Away from the decoupling limit, the largest allowed mass-splitting between H7 and the

CP-odd Higgs boson occurs before reaching the unitarity limits of the Higgs couplings.



‘ Lessons for future work I

e Basis-independent methods provide a powerful technique for studying the

theoretical structure of the two-Higgs doublet model.

e These methods provide insight into the conditions for CP-conservation

(and violation).

e The basis-independent analysis also clarifies the conditions for custodial

symmetry and its breaking

e It is now possible to perform a completely model-independent scan of
the 2HDM parameter space. Constraints on this parameter space due to
precision electroweak measurements can be obtained, and provide a possible

method for avoiding a Higgs boson mass below 200 GeV.





