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The General Two-Higgs-Doublet Model

Consider the 2HDM potential in a generic basis:
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A basis change consists of a U(2) transformation Φa → Uab̄Φb (and Φ†
ā = Φ†

b̄
U†

bā).

Rewrite V in a U(2)-covariant notation:

V = Yab̄Φ
†
āΦb +

1
2Zab̄cd̄(Φ

†
āΦb)(Φ

†
c̄Φd)

where Zab̄cd̄ = Zcd̄ab̄ and hermiticity implies Yab̄ = (Ybā)
∗ and Zab̄cd̄ = (Zbādc̄)

∗. The

barred indices help keep track of which indices transform with U and which transform

with U†. For example, Yab̄ → Uac̄Ycd̄U
†
db̄

and Zab̄cd̄ → UaēU
†
fb̄
UcḡU

†
hd̄
Zef̄gh̄.



The most general U(1)EM-conserving vacuum expectation value (vev) is:

〈Φa〉 =
v√
2

(
0

v̂a

)

, with v̂a ≡ e
iη

(
cβ

sβ eiξ

)

,

where v ≡ 2mW/g = 246 GeV. The overall phase η is arbitrary (and can be removed

with a U(1)Y hypercharge transformation). If we define the hermitian matrix Vab̄ ≡ v̂av̂
∗
b̄ ,

then the scalar potential minimum condition is given by the invariant condition:

Tr (V Y ) + 1
2v

2
Zab̄cd̄VbāVdc̄ = 0 .

The orthonormal eigenvectors of Vab̄ are v̂b and ŵb ≡ v̂ ∗
c̄ ǫcb (with ǫ12 = −ǫ21 = 1,

ǫ11 = ǫ22 = 0). Note that v̂∗
b̄ ŵb = 0. Under a U(2) transformation, v̂a → Uab̄v̂b, but:

ŵa → (det U)
−1

Uab̄ ŵb ,

where det U ≡ eiχ is a pure phase. That is, ŵa is a pseudo-vector with respect to U(2).

One can use ŵa to construct a proper second-rank tensor: Wab̄ ≡ ŵaŵ
∗
b̄ ≡ δab̄ − Vab̄.

Remark: U(2)∼= SU(2)×U(1)Y/Z2. The parameters m2
11, m

2
22, m

2
12, and λ1, . . . , λ7 are

invariant under U(1)Y transformations, but change under a “flavor”-SU(2) transformation;

whereas v̂ transforms under the full U(2) group.



A list of invariant and pseudo-invariant quantities

Y1 ≡ Tr (Y V ) , Y2 ≡ Tr (YW ) ,

Z1 ≡ Zab̄cd̄ VbāVdc̄ , Z2 ≡ Zab̄cd̄WbāWdc̄ ,

Z3 ≡ Zab̄cd̄ VbāWdc̄ , Z4 ≡ Zab̄cd̄ Vbc̄Wdā

are invariants, whereas the following (potentially complex) pseudo-invariants

Y3 ≡ Yab̄ v̂
∗
ā ŵb , Z5 ≡ Zab̄cd̄ v̂

∗
ā ŵb v̂

∗
c̄ ŵd ,
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∗
ā v̂b v̂

∗
c̄ ŵd , Z7 ≡ Zab̄cd̄ v̂

∗
ā ŵb ŵ

∗
c̄ ŵd .

transform as

[Y3, Z6, Z7] → (det U)−1[Y3, Z6, Z7] and Z5 → (det U)−2Z5 .

Physical quantities must be invariants. For example, the charged Higgs

boson mass is m2
H± = Y2+

1
2Z3v

2. Pseudo-invariants are useful because one

can always combine two such quantities to create an invariant.



The significance of the Higgs basis

Define new Higgs-doublet fields: H1 ≡ v̂∗
âΦa and H2 ≡ ŵ∗

âΦa. Then, the Higgs basis is

defined such that

〈H0
1〉 = v/

√
2 , 〈H0

2〉 = 0 ,

where v = 246 GeV. Note that H0
1 is an invariant field, where H0

2 is pseudo-invariant

(corresponding to a possible rephasing of H2). The Higgs potential in this basis is:

V = Y1H
†
1H1 + Y2H

†
2H2 + [Y3H

†
1H2 + h.c.]

+1
2Z1(H

†
1H1)

2
+ 1

2Z2(H
†
2H2)

2
+ Z3(H

†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+
{

1
2Z5(H

†
1H2)

2 +
[
Z6(H

†
1H1) + Z7(H

†
2H2)

]
H†

1H2 + h.c.
}

,

where the coefficients of V correspond to the (pseudo-)invariants introduced previously.

The potential minimum conditions are: Y1 = −1
2Z1v

2 and Y3 = −1
2Z6v

2.

Example: for the MSSM Higgs sector,

Z1 = Z2 = 1
4(g

2
+ g

′ 2
) cos

2
2β , Z3 = Z5 +

1
4(g

2 − g
′ 2
) , Z4 = Z5 − 1

2g
2
,

Z5 =
1
4(g

2 + g′ 2) sin2 2β , Z7 = −Z6 = 1
4(g

2 + g′ 2) sin 2β cos 2β .



The Higgs mass-eigenstate basis

The three physical neutral Higgs boson mass-eigenstates are determined by

diagonalizing a 3 × 3 real symmetric squared-mass matrix that is defined

in a basis in which only one of the neutral Higgs bosons has a vacuum

expectation value (the so-called “Higgs basis”). The diagonalizing matrix

is a 3 × 3 real orthogonal matrix that depends on three angles: θ12, θ13

and θ23. Under a U(2) transformation,

θ12 , θ13 are invariant, and eiθ23 → (det U)−1eiθ23 .

One can express the mass eigenstate neutral Higgs directly in terms of the

original shifted neutral fields, Φ
0
a ≡ Φ0

a − vv̂a/
√
2:
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∗
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]
,

for k = 1, . . . , 4, where h4 = G0.



The invariant quantities qkℓ are given by:

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

4 i 0

The qkℓ are functions of the angles θ12 and θ13, where cij ≡ cos θij and sij ≡ sin θij.

Since ŵae
−iθ23 is a proper U(2)-vector, we see that the mass-eigenstate

fields are indeed U(2)-invariant fields. Inverting the previous result yields:
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The gauge boson–Higgs boson interactions
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The cubic and quartic Higgs couplings
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The Higgs-fermion Yukawa couplings

The Yukawa Lagrangian, in terms of the quark mass-eigenstate fields, is:

−LY = ULΦ̃
0
āη

U
a UR+DLK

†Φ̃−
ā η

U
a UR+ULKΦ+

a η
D †
ā DR+DLΦ

0
aη

D †
ā DR+h.c. ,

where Φ̃ā ≡ (Φ̃0 , Φ̃−) = iσ2Φ
∗
ā and K is the CKM mixing matrix. The

ηU,D are 3× 3 Yukawa coupling matrices. It is convenient to write:

ηQa = κQv̂a+ρQŵa =⇒ κQ ≡ v̂∗āη
Q
a and ρQ ≡ ŵ∗

āη
Q
a , (Q = U or D) .

Under a U(2) transformation, κQ is invariant, whereas ρQ → (det U)ρQ.

By construction, κU and κD are proportional to the (real non-negative)

diagonal quark mass matrices MU and MD, respectively, whereas the

matrices ρU and ρD are independent complex 3× 3 matrices. In particular,

MU =
v√
2
κU = diag(mu , mc , mt) , MD =

v√
2
κD † = diag(md , ms , mb) .



The fermion–Higgs boson interactions

The final form for the Yukawa couplings of the mass-eigenstate Higgs bosons

and the Goldstone bosons to the quarks is [with PL,R = 1
2(1∓ γ5)]:

−LY =
1

v
D

{
MD(qk1PR + q∗k1PL) +

v√
2

[
qk2 [e

iθ23ρD]†PR + q∗k2 e
iθ23ρDPL

]}
Dhk

+
1

v
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{
MU(qk1PL + q∗k1PR) +

v√
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q∗k2 e

iθ23ρUPR + qk2 [e
iθ23ρU ]†PL

]}
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+

{
U
[
K[ρD]†PR − [ρU ]†KPL

]
DH+ +

√
2

v
U [KMDPR −MUKPL]DG+ + h.c.

}
.

By writing [ρQ]†H+ = [ρQeiθ23]†[eiθ23H+], we see that the Higgs-fermion

Yukawa couplings depend only on invariant quantities: the diagonal quark

mass matrices, ρQeiθ23, and the invariant angles θ12 and θ13.

The couplings of the neutral Higgs bosons to quark pairs are generically

CP-violating as a result of the complexity of the qk2 and the fact that the

matrices eiθ23ρQ are not generally either pure real or pure imaginary.



Conditions for neutral Higgs CP-conservation

• Im (Z∗
5Z

2
6) = Im (Z∗

5Z
2
7) = Im (Z∗

6Z7) = 0 [equivalent to conditions first

obtained by Lavoura and Silva and by Botella and Silva].

In this case a real basis exists in which all potentially complex coefficients

of the scalar potential in the Higgs basis are real (as the scalar potential

minimum condition fixes Y3 = −1
2Z6v

2).

• Z5(ρ
Q)2, Z6ρ

Q and Z7ρ
Q are real matrices (Q = U , D and E).

This guarantees that the couplings of the neutral Higgs boson to fermion

pairs are CP-invariant.

If the two conditions above are satisfied, then the neutral Higgs bosons are

eigenstates of CP, and the only source of CP-violation is the unremovable

phase in the CKM matrix that enters via the charged current interactions

mediated by either W±, H± or G± exchange.



Identifying the CP-odd scalar

There are three neutral Higgs mass-eigenstates: h1, h2 and h3. In the CP-

conserving limit, two are CP-even and one is CP-odd. (The fourth scalar,

the Goldstone boson G0 is always CP-odd.) A Higgs scalar is CP-even if

Re(qk1) 6= 0.

Suppose that Z6 6= 0. Then, there are three cases:

1: s13 = Im(Z5e
−2iθ23) = Im(Z6e

−iθ23) = Im(Z7e
−iθ23) = Im(eiθ23ρQ) = 0.

k qk1 qk2 CP

1 c12 −s12 +1

2 s12 c12 +1

3 0 i −1

4 i 0 −1



2: s12 = Im(Z5e
−2iθ23) = Re(Z6e

−iθ23) = Re(Z7e
−iθ23) = Re(eiθ23ρQ) = 0.

k qk1 qk2 CP

1 c13 −is13 +1

2 0 1 −1

3 s13 ic13 +1

4 i 0 −1

3: c12 = Im(Z5e
−2iθ23) = Re(Z6e

−iθ23) = Re(Z7e
−iθ23) = Re(eiθ23ρQ) = 0.

k qk1 qk2 CP

1 0 1 −1

2 −c13 is13 +1

3 s13 ic13 +1

4 i 0 −1

Note that G+G− and H+H− can only couple to the CP-even neutral Higgs boson:

Lint ∋ vhk

{
G+G−

[
Re(qk1)Z1 + Re(qk2e

−iθ23Z6)
]

+H
+
H

−
[
Re(qk1)Z3 + Re(qk2e

−iθ23Z7)
]}

.



We see that Higgs sector CP-conservation implies that Im(Z5e
−2iθ23) = 0.

Assuming Z5 6= 0, one can eliminate θ23 by defining the basis-invariant

quantity,

ε56 ≡
Re(Z∗

5Z
2
6)

|Z5||Z6|2
,

since Im(Z∗
5Z

2
6) = 0. Then,

Re(Z5e
−2iθ23) = ±ε56|Z5| ,

where the plus [minus] sign above is taken when Im(Z6e
−iθ23) = 0

[Re(Z6e
−iθ23) = 0], corresponding to case 1 [cases 2, 3].

Similarly, we can define ε57 by replacing Z6 with Z7 in the above formulae.

The same argument as above implies that ε56 = ε57.

We then can write for the CP-odd mass:

m2
A = Y2 +

1
2(Z3 + Z4 − ε56|Z5|)v2 .



Suppose that Z5 6= 0 and Z6 = 0. For simplicity, assume that the three

Higgs masses are non-degenerate. Then each possible case has two subcases:

(a) Im(Z7e
−iθ23) = Im(eiθ23ρQ) = 0

(b) Re(Z7e
−iθ23) = Re(eiθ23ρQ) = 0

1: s13 = c12 = Im(Z5e
−2iθ23) = 0

k qk1 qk2 CPa CPb

1 0 1 +1 −1

2 −1 0 +1 +1

3 0 i −1 +1

4 i 0 −1 −1



2: s13 = s12 = Im(Z5e
−2iθ23) = 0

k qk1 qk2 CPa CPb

1 1 0 +1 +1

2 0 1 +1 −1

3 0 i −1 +1

4 i 0 −1 −1

3: c13 = Im(Z5e
−2iθ23) = 0

k qk1 qk2 CPa CPb

1 0 i −1 +1

2 0 1 +1 −1

3 −1 0 +1 +1

4 i 0 −1 −1

In this last case, we have defined θ23 ≡ θ23 − θ12 and qk2 ≡ qk2e
−iθ12.

Likewise, the CPa and CPb conditions are defined as above but with θ23

replaced by θ23.



In all three cases where Z6 = 0,

• The scalar h that is CP-even with respect to both CPa and CPb has

m2
h = Z1v

2 and couplings to itself, gauge bosons, and fermions that are

equivalent to those of the SM Higgs boson.

• If Z7 6= 0, then the squared-mass of the CP-odd scalar A is given by

m2
A = Y2 +

1
2(Z3 + Z4 − ε57|Z5|)v2 ,

and the squared-mass of the second CP-even scalar H is given by

m2
H = Y2 +

1
2(Z3 + Z4 + ε57|Z5|)v2 .

• If Z7 = 0 but ρQ 6= 0, then one can define an analogous ε5Q that plays

the same role as ε57.



A singular point in the parameter space of CP-conserving 2HDMs:

Y3 = Z6 = Z7 = 0 .

One neutral Higgs boson is CP-even, with couplings identical to those of

the SM Higgs boson. The other two neutral Higgs bosons have opposite CP

quantum numbers, but the Higgs self-interactions and Higgs boson-vector

boson interactions do not determine which of these two neutral Higgs bosons

is the CP-odd state.

To identify the CP-odd state, examine the Higgs-fermion Yukawa couplings.∗

If eiθ23ρQ is a real matrix (CPa), then hk is CP-odd if Im(qk2) 6= 0.

If eiθ23ρQ is a pure imaginary matrix (CPb), then hk is CP-odd if Re(qk2) 6= 0.

If ρQ = 0, then CPa and CPb are two equally valid choices for the definition

of CP, and one cannot determine which of the two possible neutral Higgs

bosons is CP-odd.
∗In the final case 3, replace θ23 with θ23 and qk2 with qk2.



Custodial symmetry in the 2HDM

In the Standard model, the scalar sector exhibits a global SU(2)L×SU(2)R

symmetry that is violated only by hypercharge gauge interactions and the

Higgs-fermion Yukawa couplings. This global symmetry would be exact in

the limit of g′ = 0 and ht = hb. In the custodial symmetric limit the

electroweak ρ-parameter,

ρ ≡ m2
W

m2
Z cos θW

= 1 ,

to all orders in perturbation theory. In models with only Higgs doublets,

with g′ 6= 0 and ht 6= hb, radiative corrections generate corrections to the

tree-level relation, ρ = 1.

Pomarol and Vega studied the implications of custodial symmetry for the

2HDM in 1994. They identified two separate realizations, but failed to

realize that their two cases were actually related by a change of Higgs basis!

Clearly, basis-independent methods can be valuable here!



Define the 2 × 2 matrices M1 and M2, with columns made up of Higgs-basis fields,

M1 ≡
[
iσ2H

∗
1 , H1

]
, M2 ≡

[
iσ2(e

iχH2)
∗ , eiχH2

]
,

where χ reflects the phase freedom in defining the Higgs basis. Under a global

SU(2)L×SU(2)R transformation, Mi → LMiR
† (i = 1, 2), where L, R ∈ SU(2). The

vacuum preserves the diagonal SU(2) custodial symmetry (corresponding to L = R), since

〈M1〉 = (v/
√
2)1 and 〈M2〉 = 0. The SU(2)L×SU(2)R-invariant scalar potential in the

Higgs basis has the form:

V = 1
2Y1Tr [M

†
1M1] +

1
2Y2Tr [M

†
2M2] + Y3e

−iχ
Tr [M

†
1M2] +

1
8Z1

(
Tr [M

†
1M1]

)2

+1
8Z2

(
Tr [M†

2M2]
)2

+ 1
4Z3Tr [M†

1M1]Tr [M†
2M2] +

1
2λ
(
Tr [M†

1M2]
)2

+1
2

(
Z6e

−iχ Tr [M†
1M1] + Z7e

−iχ Tr [M†
2M2]

)
Tr [M†

1M2] .

For example, Tr [M†
1M2] = eiχH†

1H2 + h.c., etc. Since V is hermitian, it follows that:

λ ≡ Z4 = Z5e
−2iχ , Im(Y3e

−iχ) = Im(Z6e
−iχ) = Im(Z7e

−iχ) = 0 .

Because Z4 is real, it follows that Im(Z∗
5Y

2
3 ) = Im(Z∗

5Z
2
6) = Im(Z∗

5Z
2
7) = 0. That is,

custodial symmetry implies that the Higgs scalar potential is CP-conserving.



Thus, custodial symmetry requires that:

λ ≡ Z4 = Z5e
−2iχ , Im(Y3e

−iχ) = Im(Z6e
−iχ) = Im(Z7e

−iχ) = 0 .

Consider a real Higgs basis in which all Higgs basis parameters are simultaneously real.

If either Z6 or Z7 is non-zero, then sinχ = 0 and it follows that Z4 = Z5. If

Y3 = Z6 = Z7 = 0, then sin 2χ = 0 and it follows that Z4 = ±Z5. The corresponding

basis-independent conditions for custodial symmetry are:

Z4 =






Re(Z∗
5Z

2
6)

|Z6|2
= ǫ56|Z5| , if Z6 6= 0 ,

Re(Z∗
5Z

2
7)

|Z7|2
= ǫ57|Z5| , if Z7 6= 0 ,

±|Z5| , if Y3 = Z6 = Z7 = 0 .

In a real Higgs basis where Z6 or Z7 is non-zero, ǫ56 = ǫ57 = sgn Z5, in which case

custodial symmetry implies that Z4 = Z5.
† In contrast, if Y3 = Z6 = Z7 = 0, then one

can transform H2 → iH2 and change the sign of Z5 while maintaining a real Higgs basis.

Thus in this latter case, custodial symmetry requires Z4 = ±|Z5|.
†The sign of Z5 is invariant under an O(2) transformation between any two real bases.



The charged Higgs boson mass is given by

M2
H± = Y2 +

1
2Z3 .

If A0 is the CP-odd Higgs boson, we previously noted that:

m2
A =





Y2 +

1
2(Z3 + Z4 − ε56|Z5|) , if Z6 6= 0 ,

Y2 +
1
2(Z3 + Z4 − ε57|Z5|) , if Z7 6= 0 .

Hence custodial symmetry implies that

mH± = mA , if Z6 6= 0 or Z7 6= 0 .

If Y3 = Z6 = Z7 = 0, then there are two scalars, ha and hb with opposite-sign CP and
squared masses

m2
ha,b

= Y2 +
1
2v

2(Z3 + Z4 ∓ |Z5|) ,

in which case custodial symmetry implies that H± is mass-degenerate with either ha or hb.

However, if ρQ = 0 as well, then the absolute CP quantum numbers of ha and hb are

indeterminate.



Of course, in general ρQ 6= 0. For example, in a Type-II 2HDM,

|ρD| =
√
2MD tan β

v
, |ρU | =

√
2MU cot β

v
,

where tan β = v2/v1 in the basis in which the “wrong-Higgs couplings” vanish.

Thus, we examine the consequences of imposing the custodial symmetry on the

Higgs-fermion Lagrangian. The end result is:

MU = MD , (e
iθ23ρ

D
)
†
= e

iθ23ρ
U
,

which does not impose CP-conservation on the neutral Higgs-fermion interactions (since

the latter requires that eiθ23ρU , eiθ23ρD are both either real or pure imaginary matrices).

CP violation =⇒ ha and hb do not possess definite CP quantum numbers.

CP conservation =⇒ either ha or hb can be CP-even, depending on whether eiθ23ρQ is

real or pure imaginary.

Thus, for the case of Y3 = Z6 = Z7 = 0, imposing the custodial symmetry can yield

m2
H± = m2

H , where H is a CP-even Higgs boson! This is the twisted scenario of Gerard

and Herquet.



Basis-independent computation of S, T and U

in the 2HDM

If the custodial symmetry is violated, then one-loop radiative corrections can

shift the tree-level result of ρ = 1. Denoting αT ≡ δρ = ρ− 1, we find that

the contribution of a general (possibly CP-violating) Higgs sector to the T

parameter is given by the basis independent result:

αT =
g2

64π2m2
W

[
3∑

k=1

|qk2|2F (m
2
k,m

2
H±) − q

2
k1F (m

2
i ,m

2
j)

]

+O(g
′ 2
) , i 6= j 6= k ,

where mk ≡ mhk
and

F (x, y) ≡ 1
2(x+ y)− xy

x− y
ln(x/y) , F (x, x) = 0 .

This result is consistent with a recent computation of Grimus, Lavoura,

Ogreid and Osland.



In the custodial symmetric limit (with g′ = 0), the Higgs contribution to T

must vanish:

3∑

k=1

|qk2|2F (m2
k,m

2
H±)− q2k1F (m2

i ,m
2
j) = 0 .

One can check that in all of the CP-conserving cases introduced earlier, the

above relation is automatically satisfied when mH± = mA. If Z6 = Z7 = 0

then mH± = mH is also an allowed solution. As an example, for the case of:

k qk1 qk2 CPa CPb

1 0 1 +1 −1

2 −1 0 +1 +1

3 0 i −1 +1

T is proportional to:

F (m2
1,m

2
H±) + F (m2

3,m
2
H±)− F (m2

1,m
2
3) = 0 ,

if H± is degenerate either with h1 or h3.



Basis-independent formulae for S and U have also been obtained.

S =
1

πm2
Z

[
3∑

k=1

q
2
k1B22(m

2
Z;m

2
Z,m

2
k) − m

2
Zq

2
k1B0(m

2
Z;m

2
Z,m

2
k)

+m
2
ZB0(m

2
Z;m

2
Z,m

2
φ) + q

2
11B22(m

2
Z;m

2
2,m

2
3) + q

2
21B22(m

2
Z;m

2
1,m

2
3)

+q2
31B22(m

2
Z;m

2
1,m

2
2) − B22(m

2
Z;m

2
Z,m

2
φ) − B22(m

2
Z;m

2
H±,m

2
H±)

]

Here mφ us a “reference” Higgs mass (often one chooses this mass to be mZ or the mass

of the lightest neutral Higgs boson). Above, we have defined:

B22(q
2
;m

2
1,m

2
2) ≡ B22(q

2
;m

2
1,m

2
2) − B22(0;m

2
1,m

2
2) ,

B0(q
2;m2

1,m
2
2) ≡ B0(q

2;m2
1,m

2
2) − B0(0;m

2
1,m

2
2) .

where B22 and B0 are the usual Passarino-Veltman one-loop functions. Similarly,

S + U =
1

πm2
W

[
m

2
WB0(m

2
W ;m

2
W ,m

2
φ) − B22(m

2
W ;m

2
W ,m

2
φ) − 2B22(m

2
W ;m

2
H±,m

2
H±)

+
3∑

k=1

q2
k1B22(m

2
W ;m2

W ,m2
k) + |qk2|2B22(m

2
W ;m2

H±,m
2
k) − q2

k1m
2
WB0(m

2
W ;m2

W ,m2
k)

]
.
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• The general 2HDM parameters are constrained mainly by T .

• In the decoupling limit, the lightest Higgs mass is constrained in the same manner as in

the SM.

• Away from the decoupling limit, regions exist in which the lightest Higgs boson can be

significantly heavier than the SM Higgs boson.

• Away from the decoupling limit, the largest allowed mass-splitting between H± and the

CP-odd Higgs boson occurs before reaching the unitarity limits of the Higgs couplings.



Lessons for future work

• Basis-independent methods provide a powerful technique for studying the

theoretical structure of the two-Higgs doublet model.

• These methods provide insight into the conditions for CP-conservation

(and violation).

• The basis-independent analysis also clarifies the conditions for custodial

symmetry and its breaking

• It is now possible to perform a completely model-independent scan of

the 2HDM parameter space. Constraints on this parameter space due to

precision electroweak measurements can be obtained, and provide a possible

method for avoiding a Higgs boson mass below 200 GeV.




